Theoretical study of 2,3,7,8-tetrachlorodibenzo-para-dioxine removal by boron nitride-nanotube (BNNT): QSAR, IR-DFT
نویسنده
چکیده مقاله:
The study examined corrosion inhibition of corrosion inhibition of 5-methyl-2H-imidazol-4-carboxaldehyde and 1H-Indole-3-carboxaldehyde on mild steel in acidic medium using weight loss and Density Functional Theory (DFT) methods. DFT calculations were carried out at B3LYP/6-31+G** level of theory in aqueous medium on the molecular structures to describe electronic parameters. The values of thermodynamic parameters such as free energy of adsorption (ΔGºads), adsorption equilibrium constant (Kads), adsorption entropy (ΔSºads), adsorption enthalpy (ΔHºads) and activation energy (Ea) were calculated, analyzed and discussed. The adsorption process on mild steel surface showed that 4-methylimidazol-5-carboxaldehyde and Indole-3-carboxaldehyde obeyed Freundlich and Temkin adsorption isotherms respectively. Also, the molecular parameters associated with inhibition efficiency such as EHOMO, ELUMO, band gap energy (ELUMO- EHOMO), softness (S), electron affinity (EA) and number of electrons transfer were calculated. The higher inhibitory property of 5-methyl-2H-imidazol-4-carboxaldehyde was attributed to the presence of higher number of protonation sites as a result of higher number of nitrogen atoms, increase in number of plane protonated species and higher net charges on the ring atoms.
منابع مشابه
Tuning the electronic properties of boron nitride nanotube by mechanical uni-axial deformation: a DFT study
The effect of uni-axial strain on the electronic properties of (8,0) zigzag and (5,5) armchair boron nitride nanotubes (BNNT) is addressed by density functional theory calculation. The stress-strain profiles indicate that these two BNNTS of differing types display very similar mechanical properties, but there are variations in HOMO-LUMO gaps at different strains, indicating that the electronic ...
متن کاملBoron Nitride Nanotube Peapods
We demonstrate that boron nitride (BN) nanotubes can be filled "peapod" fashion with C60 molecules. Filling small-diameter BN nanotubes results in a linear chain of C60 molecules in the interior, while filling large diameter BN nanotubes leads to nanorods of crystalline C60 in the interior. Electron beam damage can be used to fuse the encapsulated C60 molecules into carbon nanotubes, leading to...
متن کاملComputational study of boron nitride nanotube synthesis: How catalyst morphology stabilizes the boron nitride bond
S. Riikonen,1 A. S. Foster,1,2 A. V. Krasheninnikov,1,3 and R. M. Nieminen1,* 1COMP/Department of Applied Physics, Helsinki University of Technology, P.O. Box 1100, Helsinki FI-02015, Finland 2Department of Physics, Tampere University of Technology, P.O. Box 692, FI-33101 TUT Tampere, Finland 3Materials Physics Division, University of Helsinki, P.O. Box 43, Helsinki FI-00014, Finland Received 1...
متن کاملDFT Study of Interactions of Carbenes with Boron Nitride Nanotubes
Single-walled boron nitride nanotubes are chosen as model reactants, and (10,0) and (6,6) are chosen as representatives of armchair and zigzag nanotubes, respectively, to study the interaction of carbenes of the type :CX2. It is found that, contrary to the case of carbon nanotubes, boron nitride tubes, particularly armchair BNNTs, do not show a propensity for cyclopropane ring formation. The SW...
متن کاملAdsorption Properties of Hydrogen on H-Capped (5, 5) Boron Nitride Nanotube (BNNT) Through Density Functional Theory
The density functional theory (DFT) has been used to simultaneously investigate physic/chemisorption properties of hydrogen on the (5, 5) boron nitride nanotube (BNNT). Geometry optimizations were carried out at B3LYP/6-31G* level of theory using Gaussian 98 suites of program. Physisorption of H outside 2 the BNNT with a vertical orientation to the tube axis above a nitrogen atom is the most st...
متن کاملC4H6 Adsorption on the Surface of a BN Nanotube: DFT Studies
Adsorption of a boron nitride nanotube (BNNT) was examined toward ethylacetylene (C4H6) molecule by using density functional theory (DFT) calculations at the B3LYP/6-31G (d) level, and it was found that the adsorption energy (Ead) of ethylacetylene the pristine nanotubes is about -1.60kcal/mol. But when nanotube has been doped with Si and Al atoms, the adsorption energy of ethylacetylene molecu...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 14 شماره 2
صفحات 103- 110
تاریخ انتشار 2018-02-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023